등록인leewk2547
등록/수정일13.11.29 / 13.11.29
문서분량7 페이지
다운로드1
구매평가
판매가격2,000원
1.Gauss Quadrature (가우스 구적법)
2. 이론해 계산
3. 프로그램 알고리즘
4. 프로그램 리스트
5. 수치 적분 결과
6. 이론 해와 결과 비교 및 분석 고찰
1.Gauss Quadrature (가우스 구적법)
우리는 곡선 상에 있는 어떤 두 점을 연결하는 직선 아래의 면적을 계산할 수 있다. 이들 점을 적절하게 위치시킴으로써 우리는 양의 오차와 음의 오차가 균형을 이룰 수 있도록 직선을 정의할 수 있을 것이다(그림 (a)에서 (b)로의 전환). Gauss구적법은 이러한 전략을 구현한 기법 중 하나이다.
오차를 구하기가 까다롭지만, 주어진 식을 적분 구간 에 맞는 식으로 변환만 하면 쉽게 아주 정확한 값을 찾을 수 있다. 그러나 매우 큰 값의 포인트를 쓰면, Round off error가 답의 정확성에 심각한 오차를 초래할 수 있기 때문이다. 따라서 Gauss Quadrature 로 구한 값을 무조건 신뢰하는 것은 피해야 한다.
<가우스 구적법>
함수를 적분하기 전에 우리는 적부구간의 양끝점이 -1에서 1이 되도록 변수를 변화시켜야한다. 이렇게 하기 위해서 a=0과 b=1을
에 대입 시키면 다음과 같다
이 관계식의 도함수는 다음과 같다.
다음의 결과를 계산해내기 위해서 위의 두 식을 원래의 식에 대입한다.
구매평가 기록이 없습니다 |
· 해피레포트는 다운로드 받은 파일에 문제가 있을
경우(손상된 파일/설명과 다른자료/중복자료 등)
1주일이내 환불요청 시 환불(재충전) 해드립니다.
(단, 단순 변심 및 실수로 인한 환불은 되지 않습
니다.)
· 파일이 열리지 않거나 브라우저 오류로 인해 다운
이 되지 않으면 고객센터로 문의바랍니다.
· 다운로드 받은 파일은 참고자료로 이용하셔야 하
며,자료의 활용에 대한 모든 책임은 다운로드 받은
회원님에게 있습니다.